Isosceles and Equilateral Triangles

After today, we should be able to use and apply theorems and properties of isosceles and equilateral triangles.

Vocabulary

Legs of an isosceles triangle

The congruent sides of an isosceles triangle.

2. Vertex angle

The angle formed by the legs of isosceles triangle.

The side opposite the vertex angle of an isosceles triangle.

4. Base angles

The two angles that have the same base as a side.

Theorems—Isosceles Triangle

Isosceles Triangle

Theorem

Hyp.

conc.

base

leg

If two sides of a triangle are congruent, then the angles opposite the sides are congruent.

HYPOTHESIS

CONCLUSION

The legs are congruent. $\overline{\mathsf{AB}}\cong\overline{\mathsf{AC}}$

The base angles are congruent. $\angle B \cong \angle C$

Converse of

> swap the hypothesis/conclusion.

Isosceles Triangle

Theorem

conc.

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

HYPOTHESIS

The base angles are congruent.

CONCLUSION

The legs are congruent. DE ≅ DF

Corollary Equilateral Triangle

If a triangle is equilateral, then it is also equiangular. (equilateral $\Delta \rightarrow$ equiangular Δ)

HYPOTHESIS

CONCLUSION

All three sides are congruent.

$$\overline{AB}\cong \overline{BC}\cong \overline{AC}$$

All three angles are congruent. $\angle A \cong \angle B \cong \angle C$

Corollary Equiangular Triangle

conc. If a triangle is equiangular, then it is also equilateral. (equiangular $\Delta \rightarrow$ equilateral Δ)

HYPOTHESIS

CONCLUSION

All three angles are congruent.

All three sides are congruent. DE ≅ DF ≅ EF

Theorem	Examples
Isosceles Triangle Theorem If two sides of a triangle are congruent, then the angles opposite the sides are congruent.	T S
	If $\overline{RT} \cong \overline{RS}$, then $\angle T \cong \angle S$.
Converse of Isosceles Triangle Theorem If two angles of a triangle are congruent, then the sides opposite those angles are congruent.	If $\angle N \cong \angle M$, then $\overline{LN} \cong \overline{LM}$.

You can use these theorems to find angle measures in isosceles triangles.

Find each angle measure.

1. $\mathbf{m} \angle C = \mathbf{1}$

$$\frac{78 + 2x = 180}{-78}$$

$$\frac{-78}{2x = 102}$$

$$x = 51$$

$$X=d$$
 $\frac{5}{5X}=18$ $\frac{5}{8}$ $\frac{-6}{8}$ $\frac{-6}$ $\frac{-6}{8}$ $\frac{-6}{8}$ $\frac{-6}{8}$ $\frac{-6}{8}$ $\frac{-6}{8}$ $\frac{-6$

$$\frac{-86 + 2x = 180}{-86}$$

$$\frac{-2x = 94}{2}$$

$$\frac{2x = 94}{2}$$

4.
$$m \angle M = 60^{\circ}$$
 $m \angle M = m \angle N$
 $x + 30 = 2x$
 $-x$
 $-x$
 $30 = x$
 $+18$
 $m \angle M = 30 + 30 = 60$

Equilateral Triangle Corollary

If a triangle is equilateral, then it is equiangular.

(equilateral $\triangle \rightarrow$ equiangular \triangle)

(CONVERSE) Equiangular Triangle Corollary

If a triangle is equiangular, then it is equilateral.

(equiangular $\triangle \rightarrow$ equilateral \triangle)

You can use these theorems to find values in equilateral triangles.

Find x in $\triangle STV$.

Find each value.

6.
$$x = 33$$

$$\frac{2x-6=60}{+6+6}$$

$$\frac{2x}{2} = \frac{66}{2}$$

$$x=33$$

